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ABSTRACT This study introduces a System for Calculating Open Data Re-identification Risk (SCORR),
a framework for quantifying privacy risks in tabular datasets. SCORR extends conventional metrics
such as k-anonymity, l-diversity, and t-closeness with novel extended metrics, including uniqueness-
only risk, uniformity-only risk, correlation-only risk, and Markov Model risk, to identify a broader
range of re-identification threats. It efficiently analyses event-level and person-level datasets with
categorical and numerical attributes. Experimental evaluations were conducted on three publicly available
datasets: OULAD, HID, and Adult, across multiple anonymisation levels. The results indicate that
higher anonymisation levels do not always proportionally enhance privacy. While stronger generalisation
improves k-anonymity, l-diversity and t-closeness vary significantly across datasets. Uniqueness-only
and uniformity-only risk decreased with anonymisation, whereas correlation-only risk remained high.
Meanwhile, Markov Model risk consistently remained high, indicating little to no improvement regardless
of the anonymisation level. Scalability analysis revealed that conventional metrics and Uniqueness-only risk
incurred minimal computational overhead, remaining independent of dataset size. However, correlation-only
and uniformity-only risk required significantly more processing time, while Markov Model risk incurred the
highest computational cost. Despite this, all metrics remained unaffected by the number of quasi-identifiers,
except t-closeness, which scaled linearly beyond a certain threshold. A usability evaluation comparing
SCORR with the freely available ARX Tool showed that SCORR reduced the number of user interactions
required for risk analysis by 59.38%, offering amore streamlined and efficient process. These results confirm
SCORR’s effectiveness in helping data custodians balance privacy protection and data utility, advancing
privacy risk assessment beyond existing tools.

INDEX TERMS Anonymization, privacy, re-identification risk, GDPR, uniqueness, uniformity, correlation,
open data.

I. INTRODUCTION
In the contemporary landscape, the scope of data is extensive,
experiencing collection and processing at an unprecedented
pace. From business and technology to healthcare and gover-
nance, data plays a pivotal role in shaping the world. Data
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empowers organisations to make well-informed decisions,
optimize processes, and deliver personalised experiences to
end-users. Moreover, data fuels advancements in artificial
intelligence and machine learning, reshaping interactions
with technology. The concept of Open Data is characterized
by the idea of making data freely available and accessible to
the public, with minimal restrictions on its use, distribution,
and reuse [1], [2], [3]. However, the benefits of Open
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Data are accompanied by significant challenges, particularly
concerning data privacy and security [4], [5], [6], [7],
[8]. The possible exposure of sensitive and personally
identifiable information upon releasing datasets raises ethical
and legal concerns regarding data usage and protection.
Notable examples include the Cambridge Analytica scan-
dal, where 50 million Facebook profiles were collected
without consent [9], and Google’s DeepMind accessing
1.6 million patient records from London hospitals to develop
predictive tools [10]. Such cases highlight risks of privacy
breaches, misuse of medical data, and diminished trust in
institutions [11], [12].
Achieving a balance between utility and privacy becomes

crucial to prevent potential misuse of data. Anonymisation
addresses this by removing or replacing identifiable informa-
tion, making it difficult for intruders to link data to specific
individuals [13], [14], [15].

However, even with anonymisation in place, achieving
a balance between utility and privacy remains challenging,
as several incidents have demonstrated that individuals in
anonymised data can still be re-identified. In 2014, the
New York City Taxi & Limousine Commission released an
anonymised dataset of 173 million taxi journeys, which was
de-anonymised within an hour to re-identify vehicles and
drivers [16]. Similarly, Netflix’s 2006 release of 100 mil-
lion anonymised movie ratings was de-anonymised within
16 days by correlating it with IMDb data [17]. That same year,
AOL exposed 20 million web search queries from 650,000
users; despite removing usernames, individuals were still
identifiable through URLs [18].

These incidents highlight the persistent risks associated
with anonymised data, emphasising the need to verify
anonymisation methods to protect individuals privacy.
Despite these efforts, guaranteed privacy remains a challenge,
as re-identification techniques can be used to link anonymised
data to individuals, leading to significant breaches [19].
Addressing these issues requires robust mechanisms to assess
the quality of anonymisation and mitigate re-identification
risks. A key question driving this research is: How can the
quality and robustness of anonymisation in tabular datasets
be systematically evaluated to minimise re-identification
risks while preserving data utility? To explore this, the
work investigates privacy concerns associated with the
re-identification of individuals in tabular datasets and
proposes a scoring system to evaluate the degree of anonymi-
sation and re-identifiability of such datasets. The primary
objective is to develop a comprehensive scoring system
that evaluates anonymised tabular datasets against multiple
attack types using diverse re-identification metrics and risk
analysis methodologies. The key contributions are outlined
below.

1) Comprehensive Scoring System: SCORR introduces
a comprehensive scoring system that integrates a
diverse range of metrics to assess re-identification risk
across multiple attack types, each assuming differ-
ent intruder knowledge. Unlike previous approaches,

SCORR extends beyond conventional metrics such as
k-anonymity, l-diversity, and t-closeness by incorpo-
rating additional risks, including uniqueness, unifor-
mity, and correlation attacks. This holistic approach
provides a more technically robust and detailed assess-
ment of vulnerabilities, enhancing the effectiveness of
privacy risk analysis.

2) Risk Analysis Framework: SCORR extends beyond
simple privacy score evaluation by providing a
detailed re-identification risk analysis. Using con-
ventional metrics, it assesses dataset compliance
with legal regulations, while extended metrics cate-
gorise re-identification risk as low, medium, or high.
By integrating both conventional and extended metrics,
SCORR offers a comprehensive risk overview, assist-
ing users in making informed decisions about public
dataset release.

3) Minimal User Interaction: SCORR prioritises ease
of use and accessibility, especially for users without
specialised expertise in data privacy. It streamlines
the decision-making process for dataset release by
requiring only two user interactions: dataset upload
and selecting relevant attributes. The system then
automates the analysis, assessing worst-case scenar-
ios to provide a comprehensive re-identification risk
overview.

Based on the contributions outlined, the remainder of
this article is structured as follows. Section II provides an
overview of the key concepts and theories related to privacy
and the anonymisation of tabular datasets. In Section III,
we review relatedwork and highlight the distinctions between
our approach and existing studies. Section IV offers a detailed
explanation of SCORR’s functionality and operation, cov-
ering its initialisation, metrics, and risk analysis processes.
Section V presents and discusses the results of our evaluation,
focusing on the metrics used and the scalability of our
SCORR framework. Section VI concludes the article by
summarising the key findings. Finally, Section VII addresses
the limitations of our work and outlines potential directions
for future research.

II. BACKGROUND AND NOTATION
A. TYPES OF DATASETS
In this study, we classify datasets into two distinct types.
The first type is the event-level dataset, which captures
and records individual events as they occur. Each entry in
this dataset corresponds to a specific event, with associated
attributes such as event type, timestamp, and the relevant
person or entity involved. This format allows for the
possibility of multiple records for a single person or entity.
Examples of such datasets include bank transaction records
or patient logs from a hospital.

The second type is at the person-level, with each record
(or row) representing a unique person. The columns capture
various attributes or characteristics of the individual, includ-
ing, but not limited to, their name, address, age, and other
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demographic information. Importantly, this dataset includes
at most one record per person. Examples of such datasets
include employee records from a workplace or a voter
registry. In this study, we classify datasets into two distinct
types.

B. TYPES OF ATTRIBUTES
In tabular datasets, attributes or variables are categorised
based on their inherent characteristics. Nominal variables,
a type of categorical data, represent distinct categories
that lack any intrinsic order. Examples include gender
(male, female), colour (red, green, blue), and product
type (electronics, clothing, food). These categorical values
can be expressed in different formats, such as text or
numerical codes. For instance, gender in a survey might be
recorded as ‘‘male’’ and ‘‘female’’ (text) or as ‘‘1’’ and ‘‘2’’
(numerical codes), with both formats conveying equivalent
information. Numeric attributes are variables with continuous
and discrete values, such as age, height, weight, or income.
Binary attributes are also part of categorical data but are
limited to two possible values, such as yes/no, true/false,
or 0/1. The type of attribute can influence the selection of
anonymisation techniques and the metric to measure the
risk of re-identification in tabular datasets. In the context of
privacy, attributes in tabular datasets are commonly classified
into Direct Identifiers (DIs), Quasi-Identifiers (QIs), and
Sensitive Attributes (SAs) [20]. DIs refer to attributes that
can be used to identify an individual directly, such as name,
address, social security number, passport number, or email
address [21]. A QI is a set of attributes that, when combined,
have the potential to identify an individual, even if DIs are
removed or anonymised. It includes several attributes such
as age, gender, postcode, occupation, or education level.
SAs are attributes in tabular datasets that, if exposed or
disclosed, could raise privacy concerns for individuals or
groups. SAs are attributes which are typically considered
private or protected. Examples include health status, salary,
or criminal record. These classifications are crucial for
understanding and mitigating privacy risks associated with
data sharing and use.

C. DATASET NOTATION
To develop the equations for each metric, we assume an
event-level dataset with n records, m attributes (elements) in
the QI, one SA, and data for p distinct persons. In a person-
level dataset, the number of persons equals the number of
records (p = n), as each record represents a distinct person.
Conversely, in an event-level dataset, the number of persons
can be less than or equal to the number of records (p ≤ n)
since multiple records can represent multiple events related
to a single person. The following assumptions are made for
the calculations.

To formulate the equations for each metric, we consider
an event-level dataset with n records, m attributes in the QI,
one SA, and data for p distinct persons. In a person-level

dataset, each record corresponds to a unique person, meaning
p = n. In contrast, an event-level dataset allows multiple
records to represent events associated with the same person,
resulting in p ≤ n. The following assumptions are made for
the calculations.

1) SCORR evaluates the worst-case risk scenario, assum-
ing the intruder knows the QI values of the target data
subject.

2) The intruder attempts to infer a single SA value
associated with the target data subject.

3) In an event-level dataset, a specific attribute, Person ID,
is used to reference the relevant individual.

FIGURE 1. Notations of the dataset.

Figure 1 presents the notational conventions used in the
equations. To streamline the discussion, we consider all
attributes, except the Person ID and the SA, to be elements
of QI, under the assumption that our data model includes
exactly one QI and one SA. The indices i, j, and k are used
to represent records (rows), attributes (columns), and distinct
persons, respectively.

Attributes = {a1, a2, . . . , am+2}

Person ID Attribute = {a1}

QI = {a2, a3, . . . , am+1}

SA = {am+2}

Records = {r1, r2, . . . , rn}

Distinct Persons = {u1, u2, . . . , up}

Value of aj in ith record = vij
Person ID Value in ith record = vi1 = uk

QI Value in ith record = QI i = {vi2, . . . , v
i
m+1}

SA Value in ith record = SAi = vim+2

D. CONVENTIONAL METRICS
Emerging from the beginning of privacy-preserving data pub-
lishing, three pivotal privacy models have gained widespread
recognition and extensive usage. Consequently, they are often
referred to as conventional metrics in our paper. Each model
addresses different aspects of privacy protection, and together
they contribute to a holistic approach.

1) k-ANONYMITY
k-anonymity is a privacy concept that masks individual
identities in a dataset by ensuring that each record cannot
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be uniquely identified by its QI and therefore safeguards
against linking attacks. A dataset is considered k-anonymous
if each record cannot be distinguished from at least k − 1
other records based on the QI. k-anonymity is enforced
through transformations like generalisation and suppression,
which reduce data granularity while retaining significant
patterns and statistical information. However, it is crucial
to acknowledge that any generalisation algorithm used to
achieve k-anonymity inevitably results in some loss of
information from the original dataset [22].

2) l-DIVERSITY
While k-anonymity is a useful privacy measure, it has
limitations. It is identified that it cannot protect a dataset
against homogeneity attacks and background knowledge
attacks [23]. To address this concern, l-diversity builds upon
the foundation of k-anonymity by introducing the idea of
ensuring that each equivalence class (a group of records with
similar values of QI) contains at least l distinct sensitive
values [23]. This criterion enhances individuals’ privacy by
introducing diversity and uncertainty to the data, thereby
making it harder for adversaries to deduce specific sensitive
values associated with individuals. By enforcing l-diversity,
the dataset becomes more resilient against attacks that exploit
attribute disclosure [23].

3) t-CLOSENESS
t-closeness was introduced to address the limitations of
l-diversity in preventing attribute disclosure, particularly
its vulnerability to skewness and similarity attacks [24].
A dataset satisfies t-closeness when the distribution of an
SA within each equivalence class is sufficiently similar to the
distribution of the SA across the entire dataset. This similarity
is quantified by a threshold t , which ensures that the risk of
disclosing sensitive attributes within individual equivalence
classes is minimised by limiting the distance between these
distributions.

E. EXTENDED METRICS
In addition to these conventional metrics, there are several
other metrics that quantify the risk of re-identification across
various attack types and domains. As a result, we refer to
these as extended metrics in our paper, highlighting their role
in providing an additional layer of privacy protection beyond
that offered by conventional metrics.

1) UNIQUENESS
Uniqueness is defined by the extent to which a value
within a dataset can be distinguished from those in other
entries [25]. For example, consider a dataset with the birth
years of 10 individuals: [1991, 1991, 1991, 1993, 1993, 1993,
1993, 1993, 1993, 1999]. In this case, the value ‘‘1993’’
is less distinguishable due to its higher frequency, thereby
offering greater privacy. Conversely, ‘‘1999’’ is notably
unique and rare. When an individual’s attribute values are

distinct within a dataset, the risk of re-identification increases
significantly. Unique individuals are more easily identified
by matching their attribute values, making them more
vulnerable to re-identification [11]. Uniqueness is commonly
employed as a metric to assess re-identification risk in
previous studies [26] and is closely related to the concept of
k-anonymity. In SCORR, we specifically use the metric of
uniqueness-only risk (Ruq) to assess the uniqueness of QI
attributes. In this context, the probability Pid represents the
relative occurrence of the QI value of the ith record in the
whole dataset. This probability, referred to as Duplication
Probability, is calculated as shown in Equation 1.

Pid =
f (QI i)
n

∈ (0, 1], (1)

where
Pid = Duplication Probability of ith record
QI i = QI value of ith record
f (QI i)= Total occurrences of QI i

n = Number of records

Subsequently, Ruq of the ith record is calculated by
Equation 2. This is done by taking the complement of the
logarithmically transformed Duplication Probability associ-
ated with the ith record Pid .

Riuq = 1 −
log2[f (QI

i)]
log2(n)

∈ (0, 1], (2)

Since Ruq is selected for SCORR and calculated for each
record individually, the minimum, maximum, and mean are
then determined to represent the overall risk of the dataset.

2) UNIFORMITY
Uniformity pertains to the likelihood of accurately identifying
an individual based on consistent patterns in their behaviour
or data. For instance, if only one student consistently achieves
low scores on exams, it becomes easier to identify that
student based on their performance. The more consistently
an individual exhibits a particular behaviour across various
situations, the more reliably that behaviour or data pattern
can be associated with them. In other words, unique and
consistent behavioural or data patterns increase the probabil-
ity of precise identification [25]. For our system, we utilise
the metric uniformity-only risk (Ruf ) to assess uniformity
characteristics. This metric is particularly applicable in
scenarios involving event-level data, where multiple records
may correspond to a single individual. When an individual
demonstrates regularity in attribute values (high uniformity),
the probability of their successful re-identification increases.
This concept introduces an additional layer of privacy
protection beyond mere uniqueness. Within SCORR, the Ruf
metric assesses the association between an individual and a
specific or a set of attribute values, focusing exclusively on
the uniformity of QI values. The metric is computed for each
record as described in Equation 3, considering both the entire
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set of QI values and each QI element separately.

Riuf = P( uk | QI i ) ∈ (0, 1], (3)

where
Riuf = Uniformity-only Risk of ith record
uk = Person relevant to ith record
QI i = QI value of ith record

3) CORRELATION
In addition to the uniqueness and uniformity of attribute
values, the risk of re-identification is significantly influenced
by the correlation between attributes when multiple attributes
are analysed together. A high correlation between attributes
increases the probability of inferring the value of one attribute
based on the known values of other correlated attributes.
For example, the level of education may be strongly
correlated with salary, making it possible to estimate an
individual’s salary if their education is known. Attributes that
exhibit strong correlations are therefore more vulnerable to
re-identification when values from closely related attributes
are available [25]. To specifically address the risk posed
by correlated attributes, a specialised metric known as
Correlation-only Risk (Rco) is used. This metric is designed
to assess the correlation between the QI and the SA, providing
a measure of protection against correlation attacks. The Rco
is computed for each record using the equation specified in 4.

Rico = P(SAi | QI i) ∈ (0, 1], (4)

where
Rico = Correlation-only Risk of ith record
QI i = QI Value of ith record
SAi = SA Value of ith record

4) MARKOV MODEL RISK
The Markov Model Risk (Rmm), as introduced in [25], encap-
sulates key characteristics such as uniqueness, uniformity,
and correlation. This model treats all attributes uniformly,
without distinguishing between QI and SA. Utilising a
Markov chain, the risk of re-identification is assessed by
sequentially estimating attribute values based on their corre-
lations, starting from a known attribute. In SCORR, where
attributes are classified intoQI and SA,we employ amodified
version of theMarkovModel to calculate the re-identification
risk. This modification restricts the calculation to a single
step, transitioning directly from the known QI to the SA.
As a result, the process is simplified, avoiding the need for
multiple sequential attribute-to-attribute calculations. This
calculation is formally represented in Equation 5. Here,
the term Pid denotes the uniqueness of the QI. The term
[1 − P(uk |QI i)] reflects the uniformity of the QI, while
[1−P(SAi|QI i)] indicates the correlation between the QI and
SA. Furthermore, [1 − P(uk |SAi)] represents the uniformity

of the SA.

Rimm = 1 −

[
Pid · [1 − P(uk |QI i)]

· [1 − P(SAi|QI i)] · [1 − P(uk |SAi)]
]

∈ (0, 1], (5)

where
Rimm = Markov Model risk of ith record
Pid = Duplication Probability of ith record
QI i = QI Value of ith record
SAi = SA Value of ith record
uk = Person relevant to ith record

F. DIFFERENTIAL PRIVACY AND SYNTHETIC DATA
GENERATION
Differential privacy (DP), introduced by Dwork et al. [27],
provides a mathematical framework to balance the trade-off
between data utility and individual privacy in data analysis.
It ensures that the inclusion or exclusion of any single
individual in a dataset has a minimal impact on the outcome
of an analysis, thereby offering a formal privacy guarantee.
Typically, DP is implemented by introducing random noise
to query outputs, making it difficult to infer specific details
about any individual while preserving the overall statistical
utility of the dataset.

A fundamental mechanism to achieve DP is the Laplace
mechanism [28]. Given a query function f , this approach
computes f on the dataset and adds noise sampled from
a centred Laplace distribution. The scale of the noise is
proportional to the inverse of the chosen privacy parameter ϵ,
multiplied by the sensitivity of the function f . Sensitivity,
in this context, quantifies the maximum possible change in
the function’s output due to the addition or removal of a
single record. The selection of an appropriate noise scale is
crucial in managing the privacy-utility trade-off and highly
depends on the use cases of the dataset. While DP is effective
for aggregate data publishing, its application to record-level
Open Data publishing remains challenging [29]. The primary
difficulty arises from the fact that future analyses of published
data are unknown at the stage of noise addition, making it
difficult to determine the appropriate sensitivity for noise
generation. This concern is widely addressed in [30] as the
Privacy-Flexibility-Accuracy trilemma.

An alternative approach to privacy-preserving data sharing
is synthetic data generation (SDG). SDG techniques create
artificial datasets that preserve the statistical properties of
the original data, allowing analysts to perform computations
using the same algorithms and pipelines as they would
with real data while mitigating privacy risks. SDG has
emerged as a more effective approach for integrating DP
into record-level data publications [29]. Even the previous
studies [31], [32] on usingDP for record-level data publishing
incorporate a synthetic data generation subprocess within
the overall pipeline. Despite being a relatively new research
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area, differentially private SDG has seen growing interest
in the industry. The US National Institute for Standards
and Technology (NIST) recently launched a challenge to
develop DP-based SDG models for public-use datasets [33].
Similarly, the International Organisation for Migration and
Israel’sMinistry of Health have released differentially private
synthetic datasets [34], [35].
It is important to distinguish synthetic data and perturbed

data with noise addition from anonymised data generated
using traditional anonymisation techniques such as generali-
sation and suppression. Unlike anonymisation, which reduces
the granularity of the original data, synthetic and noised data
aim to maintain granularity while ensuring privacy. Ideally,
such data should be resilient against re-identification attacks,
including linking attacks, homogeneity attacks, background
knowledge attacks, similarity attacks, skewness attacks, and
uniformity attacks, as they do not directly represent real
individuals. However, correlation attacks remain a concern,
as relationships between attributes are often preserved to
maintain data utility. In practical scenarios, residual privacy
risks persist in synthetic and noised data, necessitating
empirical evaluation of their vulnerability to re-identification
attempts [36]. Since real personal data is only present in the
original dataset, privacy risks must be assessed by comparing
synthetic or perturbed data with their original data [37]. This
differs from anonymisation risk assessment methods used in
SCORR, which evaluate risk solely based on anonymised
datasets in a context where it does not have access to the
original dataset. Consequently, risk metrics for synthetic
and perturbed data differ from those used in SCORR,
representing a distinct and emerging research area. Several
ongoing studies such as [35], [37] focus on addressing these
challenges, while further research efforts are discussed in
detail in [38].

G. DATA UTILITY MEASUREMENT
Assessing the utility of an anonymised dataset involves
evaluating how well it preserves the analytical value of the
original data while ensuring privacy protection. Existing
methods measure utility by comparing actual values or
statistical properties between the anonymised and original
datasets. These assessments are inherently a posteriori,
as they evaluate utility after anonymisation and require access
to both datasets. Common methods include evaluating the
number of missing values, the number of records modified,
and contingency table comparisons [39]. Statistical similarity
measures (mean, covariance, and correlation), information
loss measures, eigenvalue analysis, entropy comparison
and distribution distance comparison are also employed.
Moreover, multivariate utility measures such as linear and
logistic regression, Cronbach’s Alpha and Adjusted Cramer’s
V evaluate changes in accuracy between anonymised and
original data. These measures help determine whether
anonymised data remains suitable for specific analyses [39],
[40], [41], [42]. However, when the original dataset is not

available or not accessible for the utility assessment, direct
comparisons become infeasible, making absolute utility
measurement challenging and establishing it as a distinct
research area. Therefore, within the scope of SCORR, data
utility measurement is not addressed and will be considered
in future work.

H. LEGAL ASPECTS
As the collection and utilisation of personal information
continue to grow, concerns regarding privacy breaches and
the potential misuse of data have prompted the development
of legal frameworks designed to safeguard individuals’
rights while allowing the benefits of data analysis. Re-
identification risks have been a focal point in various
legal frameworks, such as the European Union’s General
Data Protection Regulation (GDPR) [43], the US Privacy
Act [44], and Brazil’s Lei Geral de Proteção de Dados
Pessoais (LGPD) [45]. The GDPR, in particular, recog-
nises the importance of data anonymisation as a measure
to enhance privacy [46]. It encourages organisations to
employ anonymisation techniques to minimise the risk of
re-identification and the ensuing privacy breaches. While
the GDPR acknowledges the challenges associated with
achieving true anonymisation, it emphasises the need to
balance data utility with privacy protection. Although it does
not prescribe specific anonymisation methods, the regulation
mandates that techniques must be sufficiently robust to
resist re-identification attempts. Organisations are required to
assess and mitigate re-identification risks to ensure the secu-
rity of personal data, thereby upholding individuals’ rights
in the face of evolving re-identification technologies. The
GDPR does not explicitly delineate the criteria that publicly
released datasets must meet to comply with its requirements.
However, the Article 29 Data Protection Working Party [47]
provides practical guidance on ensuring transparency in
personal data processing under the GDPR. In this con-
text, privacy models such as k-anonymity, l-diversity, and
t-closeness are recommended to mitigate re-identification
risks. To implement these models effectively, a minimum
privacy parameter value of k > 10 is commonly recom-
mended [48], consistent with guidance from the Working
Party and the European Medicines Agency (EMA) [49].
Additionally, for t-closeness, the criteria of t <= 0.5 have
been established to meet compliance [48]. Collectively, these
recommendations form a standard framework for enhancing
data privacy when releasing datasets to the public.

III. RELATED WORK
Various methods have been proposed to quantify
re-identification risk, each tailored to specific data structures
and anonymisation techniques. These methods rely on
mathematical models designed for distinct attack scenarios,
making their applicability highly context-dependent. This
section reviews recent studies, categorising them based on
their methodological approach and scope.
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A. RE-IDENTIFICATION RISK METRICS
Several studies focus on quantifying re-identification risks
using statistical and probabilistic models. The work in [25]
introduces a Markov Model for calculating re-identification
risk within a realistic threat model, where an intruder may
have varying levels of knowledge, from a single attribute to
full dataset awareness. It also integrates uniqueness, unifor-
mity and correlation characteristics into the final risk score.
However, this method does not distinguish between QI and
sensitive SAs, as it assumes that their impact on privacy risk is
determined by the intruder’s prior knowledge and intentions,
which limits its applicability for SCORR. Entropy-based
approaches have also been explored, such as in [50], where a
novelmetric estimates re-identification risk by analysing con-
ditional entropy between original and anonymised datasets.
This method quantifies uniqueness and models the proba-
bility of mapping an intruder’s background knowledge into
the anonymised dataset. However, its applicability is limited
since it can only be utilised when the probability distribution
of mapping the original dataset to the anonymised dataset
is known, making it unsuitable for SCORR’s framework,
where only the anonymised dataset is available. In contrast,
re-identification algorithmic approaches like those presented
in [51] introduce the re-identification ratio, which quantifies
risk based on the success rate of various re-identification
techniques. The metric measures the proportion of correctly
matched records, reflecting both dataset vulnerability and
the effectiveness of the re-identification algorithm. However,
this approach requires significant computational resources
and prior knowledge of re-identification strategies, which
are not available in SCORR. Furthermore, a modification
of k-anonymity, known as k-anonyMean, was introduced
in [51] as an alternative risk metric. It provides the average
k value across all equivalence classes, highlighting potential
over-anonymisation.

B. ALTERNATIVE RISK ASSESSMENT TECHNIQUES
The study in [52] introduces a copula-based modelling
approach that employs synthetic data generation to assess
re-identification risks associated with sample-to-population
attacks. However, as this method relies on external reference
datasets, it is not directly applicable to SCORR’s self-
contained risk analysis. Other studies focus on evaluating
the impact of data sanitisation techniques. The work in [53]
explores how different anonymisation strategies, such as
recoding, top coding, swapping, and adding noise, influence
re-identification probability. By modelling intruder assump-
tions, this study provides comprehensive guidance on risk
mitigation strategies. Dankar et al. [11] emphasise uniqueness
as a primary measure of re-identification risk, particularly in
clinical datasets. Given the challenge of directly measuring
uniqueness, their study evaluates estimation techniques to
support health data privacy compliance. However, it assumes
full dataset availability rather than limited public releases.
Another privacy risk framework, Anonymeter, introduced

in [37], focuses on synthetic data. This tool evaluates singling
out, linkability, and inference risks using an attack-based
approach, where synthetic data is tested against adversarial
models. Unlike SCORR, which relies on metric-based
estimations, Anonymeter executes active attacks to measure
vulnerability, making it less suited for evaluating anonymised
datasets in isolation.

C. EXISTING RE-IDENTIFICATION RISK ASSESSMENT
TOOLS
Several software tools have been developed to assist in
privacy risk analysis and anonymisation. ARX [54], [55]
is a widely used open-source tool that provides dataset
anonymisation through configurable privacy models such as
k-anonymity, l-diversity, and t-closeness. Users can define
privacy constraints, apply generalisation and suppression
techniques, and evaluate privacy-utility trade-offs. The
Re-identifier Risk Ready Reckoner (R4) [26], developed
by CSIRO Data61, quantifies risk using uniqueness-based
metrics and supports anonymisation via generalisation and
perturbation. R4 offers an interactive dashboard and an
API for integration into enterprise data management sys-
tems. Google’s Cloud Data Loss Prevention API [56]
includes built-in risk assessment functionalities that calculate
k-anonymity, l-diversity, k-Map, and δ-presence. However,
it primarily focuses on classification, de-identification and
redaction rather than a comprehensive evaluation of dataset
re-identification risks.

D. COMPARISON WITH SCORR
SCORR differs from existing approaches by integrating
multiple risk assessment models while maintaining com-
putational efficiency and ease of use. Unlike attack-based
re-identification models that require extensive computation,
SCORR employs metric-based risk estimation, allowing risk
assessment without prior knowledge of potential attacks.
Moreover, SCORR introduces structured risk categorisation
that extends beyond uniqueness, incorporating uniformity
and correlation risks. Additionally, existing tools like ARX
and R4 provide strong anonymisation capabilities but do
not explicitly quantify re-identification risks across multiple
attack scenarios. Google Cloud’s DLP API supports some
risk calculations but lacks a multi-metric risk model.
By contrast, SCORR provides a comprehensive, structured,
and interpretable approach to risk assessment, allowing data
custodians to make informed decisions on dataset release.
Table 1 summarises the key differences between SCORR and
existing tools, highlighting its broader scope in addressing
re-identification risks.

IV. SYSTEM FOR CALCULATING OPEN DATA
RE-IDENTIFICATION RISK (SCORR)
A. INITIALIZATION
SCORR is an application with a modern user interface,
designed to guide users through each step of the process.
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TABLE 1. Comparison of SCORR, ARX, and R4 tools.

An overview of these steps is provided in Figure 2. Upon
launching, the first task for the user is to load a dataset in
CSV format. The application then automatically identifies
and extracts the attributes listed in the dataset’s first row.
Next, the user is required to classify the dataset, specifying
whether it is event-level or person-level. For event-level
datasets, the user must also identify the person ID attribute,
which uniquely corresponds to individuals within the dataset.
Once the attributes are identified, the interface displays
them, enabling users to select the QI and SAs that will
be the focus of the risk assessment process. SCORR is
designed to assess each SA individually, producing specific
results and risk analyses for each. If multiple SAs require
evaluation, SCORR mandates separate runs for each SA.
To assist in the selection of attributes, a dedicated function
offers guidance on identifying QI. After completing the
selection process, the user’s involvement concludes, and the
tool proceeds with the subsequent processes autonomously.
The application then computes various riskmetrics, including
both conventional and extended metrics, which provide
insights into the potential risk of re-identification within
the dataset. By evaluating these metrics, the application
offers a detailed analysis of the dataset’s privacy risk in
re-identification attacks.

B. RISK ANALYSIS
Conventional metrics are employed to ensure compliance
with legal data privacy requirements. As discussed in
Section II-H, specific criteria for the maximum allowable
re-identification risk or the required level of anonymisation
before a dataset can be publicly released are not explicitly
defined. However, it is suggested that k-anonymity should

FIGURE 2. Overview of steps followed by the user in SCORR.

satisfy the condition k > 10, and t-closeness should meet
the criterion t ≤ 0.5 as discussed in section II-H. Based on
these parameters, a workflow has been developed to assess
compliance with conventional metrics, as shown in Figure 3.
The initial step in this workflow is to verify whether

the dataset meets the k-anonymity requirement. If this
criterion is not satisfied, the dataset is classified as ‘‘Not
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FIGURE 3. Compliance criteria for conventional metrics.

Compliant with Conventional Metrics.’’ Subsequently, the
t-value is checked. Only if the dataset meets this criterion
as well is it considered compliant with conventional metrics;
otherwise, it is classified as non-compliant. While there is
no fixed requirement for l-diversity in this workflow, the
maximum achievable l-diversity for a dataset is defined as
the minimum between the k-anonymity value and the number
of distinct values of the SA. Although l-diversity is not used
to determine compliance with conventional metrics in this
study, we calculate its value to verify whether the maximum
possible l-diversity has been achieved. The trade-off between
data utility and privacy is less pronounced in t-closeness
compared to l-diversity, which tends to reduce data utility
significantly for minimal privacy protection.

Once compliance with conventional metrics has been
assessed, extended metrics are evaluated to gain a deeper
understanding of the dataset’s uniqueness, uniformity, and
correlation characteristics. These metrics are scored on a
scale from 0 to 1, where a score closer to 0 indicates a
lower likelihood of re-identification, and a score closer to
1 suggests a higher re-identification risk. The metrics are
computed for all records in the dataset, but only themaximum
risk scores are used for analysis, reflecting the worst-case
scenario. The score range is divided into three categories:
low risk [0 to 0.33], medium risk [0.34 to 0.66], and high
risk [0.67 to 1]. All uniqueness, uniformity, and correlation
metrics are classified according to these risk categories and
combined in a workflow, as shown in Figure 4. If any
extended metric falls into the high-risk category, the dataset
is categorised as high risk under extended metrics. Similarly,
if any metric falls into the medium-risk category, the dataset
is classified as medium risk. A dataset is considered low risk
only if all three metrics fall into the low-risk category.

FIGURE 4. Compliance criteria for extended metrics.

It should be noted that the Rmm is not linearly related
to the actual re-identification risk. Therefore, it cannot
be categorised into low, medium, and high risk based on
linear thresholds, unlike the uniqueness-only, uniformity-
only, and Rco. Consequently, although the Markov Model
risk is calculated, it is not used to assess dataset compliance.
After categorising the risks associated with both conventional
and extended metrics, a final risk overview for the dataset is
established. If the dataset does not comply with conventional
metrics or is deemed high risk based on the extended metrics,
it is not approved for public release. If the dataset complies
with conventional metrics but presents a medium risk in
the extended metrics, it may be released publicly with an
acknowledgement of the associated risk. A dataset is eligible
for public release if it complies with conventional metrics
and exhibits low risk based on extended metrics. This final
decision-making process is illustrated in Figure 5.
All metrics can be applied to both categorical and numerical
data in person-level and event-level datasets. However,
with the exception of t-closeness, numerical data is treated
as categorical data with discrete values by ignoring their
continuous nature. Thus, numerical data anonymised through
generalisation and suppression techniques can be assessed,
while numerical data anonymised using perturbation tech-
niques cannot.

V. EVALUATION
For the practical evaluation, we utilised publicly available
tabular datasets, specifically the Open University Learn-
ing Analytics Dataset (OULAD) [57], Hospital Inpatient
Discharges (HID) [58], and the Adult dataset [59]. The
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FIGURE 5. Compliance criteria for the dataset.

OULAD dataset, provided by The Open University, which
has the largest number of Bachelor’s students in the
UK, includes data from seven modules of the university’s
online learning platform. The dataset encompasses student
demographics, assessment scores, and interactions with the
Virtual Learning Environment, amounting to 32,593 records
across 12 attributes. The dataset is event-level, and the
attribute ‘‘id_student’’ serves as the unique student identifier
(Person ID), while attributes such as ‘‘gender’’, ‘‘region’’,
‘‘highest_education’’, ‘‘age_band’’, and ‘‘disability’’ are
treated as QI. The attribute ‘‘final_result’’ is designated as
the SA for the evaluation. The HID dataset is a person-level
dataset, consisting of anonymised records of hospital dis-
charges in New York State, detailing patient characteristics,
diagnoses, treatments, services, and charges. This dataset,
which includes 2,367,550 records across 34 attributes, has
been previously employed in re-identification risk assessment
studies [60] based on the size of equivalence classes.
In our study, the attributes ‘‘Hospital Country’’, ‘‘Facility
Name’’, ‘‘Age Group’’, ‘‘Zip Code – 3 digits’’, ‘‘Gender’’,
‘‘Race’’, and ‘‘Ethnicity’’ are identified as QI, with the
‘‘CCS Diagnosis Description’’ serving as the SA. The
Adult dataset, a person-level dataset sourced from the UC
Irvine Machine Learning Repository, was extracted from
the 1994 U.S. Census Bureau database by Ronny Kohavi
and Barry Becker. It contains 14 attributes, where ‘‘age’’,

‘‘working class’’, ‘‘education’’, ‘‘marital status’’, ‘‘occupa-
tion’’, ‘‘relationship’’, ‘‘race’’ and ‘‘sex’’ are selected as QI
and ‘‘income’’ is selected as the SA. This dataset comprises
48,842 records and is commonly used to predict whether
an individual’s annual income exceeds $50,000. To simplify
computations, we restricted our analysis to the first 5,000
records of each dataset.

A. PRIVACY METRICS
The datasets were anonymised using ARX [54], [55],
ensuring k > 10 and t ≤ 0.5. ARX allows dataset
anonymisation based on predefined parameter settings for
these metrics. Several anonymised versions were generated,
each with different levels of generalisation for QI. However,
three progressively generalised versions were selected for
further analysis. SCORR was then applied to compute results
separately for the original dataset and the three anonymised
versions. The experimental setup used in this study is shown
in Figure 6 and was applied to all three datasets: OULAD,
HID, and the Adult dataset.

FIGURE 6. Test Setup for privacy metrics of original datasets.

The evaluation of privacy metrics was conducted using two
distinct approaches. First, the metrics were assessed based
on the privacy characteristics they measure, as detailed in the
previous sections. Table 2 summarises these characteristics
for each metric. Second, the metrics were tested to evaluate
re-identification risk across various publicly available tabular
datasets. The results of this analysis are presented and
discussed in the following sections.

1) CONVENTIONAL METRICS
This section demonstrates the performance of SCORR
in accurately estimating conventional privacy metrics and
comparing these results with those obtained from ARX.
The metrics evaluated include k-anonymity, l-diversity, and
t-closeness. Specifically, k-anonymity is derived from the
QI, while l-diversity and t-closeness are calculated based
on both QI and SA. The calculation steps are provided in
Section II-D. For the evaluations, three anonymised versions
of the OULAD dataset were selected, with k = 12, k = 20,
and k = 25. Similarly, for the HID dataset, anonymised
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TABLE 2. Characteristics addressed by metrics.

versions with k = 11, k = 14, and k = 19 were
chosen, and for the Adult dataset, versions with k = 11,
k = 14, and k = 20 were selected. The original datasets
exhibited a k-anonymity of 1. All anonymised datasets,
except for the HID dataset, reached the target maximum
t-closeness value of 0.5. In the HID dataset, however, the
t-closeness target was set higher to avoid a further reduction
in data utility. Figure 7 presents the summary of conventional
privacy metrics across all datasets and anonymisation levels,
including the original datasets. In the figure, each colour
represents a specific level of anonymisation, with dark blue
denoting the original dataset. The figure is organised into
three rows: the top row shows results for the OULAD dataset,
the middle row corresponds to the HID dataset, and the
bottom row represents the Adult dataset.

FIGURE 7. Conventional metrics plot for all datasets.

To start with, the privacy metrics calculated by ARX for
the original and anonymised datasets match the values
determined by SCORR for the same datasets.

The first row shows the results for the OULAD dataset.
Three anonymised datasets with k-anonymity values of up
to 25 were created. The l-diversity also improves, but
only reaches a maximum value of 4 since the selected SA
‘‘final_result’’ has only 4 distinct values. In contrast, the
t-closeness decreases significantly from the original to the
anonymised dataset, achieving the desired values of less
than or equal to 0.5. For the OULAD dataset, it can also
be observed that t-closeness increases from Anonymised-1
to Anonymised-2 due to changes in the SA values within
equivalent classes in the respective anonymised datasets.

In the second row, displaying the HID dataset, it can
be seen that the k-anonymity has increased with each
anonymisation level. At the same time, l-diversity improved
from the worst value of 1 in the original dataset to 11. The
t-closeness value dropped from 1 in the original dataset to
0.713, but could not reach the value below 0.5 as described
above. This also shows that higher anonymisation does not
necessarily provide a better solution, as can be observed
in the transition from Anonymised-1 to Anonymised-2.
Here, the l-diversity decreased, and at the same time, the
t-closeness value increased. This is because the formation
of the equivalence classes and their SA value distribution
can be different in anonymised datasets, which will lead
to different l-diversity and t-closeness values. In addition,
the SA ‘‘CCS Diagnosis Description’’ contains 178 distinct
values, meaning that the maximum achievable l-diversity is
limited by the k value. However, this maximum l-diversity
could not be reached in practice. Anonymising the datasets
to achieve the greatest possible l-diversity and a t-closeness
of 0.5 or less would lead to a considerable reduction in data
utility and was therefore not considered.

In the third row, the results for the Adult dataset can be
seen. Closer k values to the HID dataset were used in order to
find a suitable balance between data quality and privacy. The
l diversity improves as a result of anonymisation, but can only
reach a maximum value of 2, as the specified SA ‘‘income’’
only contains the two distinct values of ‘‘≤ 50k’’ and
‘‘> 50k’’. Similar to the OULAD dataset, the Adult dataset
also achieved t ≤ 0.5. However, these values were already
very low before anonymisation, with an initial value of
0.519. t-closeness shows a slight increase from Anonymised-
1 to Anonymised-3 while satisfying t ≤ 0.5 criteria.
This happened since ARX does not try to further reduce
t-closeness, as it has already been achieved. Furthermore,
the formation of the equivalence classes and their sensitive
attribute value distribution can be different in anonymised
datasets, which will lead to different t-closeness values.

The exact results for all datasets have been summarised
below in Table 3

2) EXTENDED METRICS
Extended metrics were calculated for each record in the
dataset using the equations presented in section II-E, with
only the maximum values considered as global values for
evaluation, focusing on the worst-case risk scenario. First,
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TABLE 3. Calculated conventional metrics results for all datasets.

Ruq and Ruf are calculated for the entire QI, followed by
Ruf for each individual QI attribute. Rco is assessed for every
combination of a QI attribute with the selected SA, whileRmm
is computed based on the entire QI in relation to the SA. The
datasets are the same as those used in the evaluation before
and correspond to the same anonymisation levels.

There is a separate heatmap for each dataset because the
datasets have different attributes, which are also individually
assessed by Ruf and Rco. The evaluation of the extended
metrics for OULAD can be seen in Figure 8. Each row of
the heatmap represents an extended metric for a specific
attribute or attribute combination calculated for the Original,
Anonymised-1, Anonymised-2 and Anonymised-3 datasets
mentioned in the previous section. The last row of the
heatmap represents the Rmm values.

FIGURE 8. Extended metrics heatmap for OULAD Student Info dataset.

It is evident that most of the extendedmetrics show a decrease
in associated risk from the Original to the Anonymised-3 in
general, despite some occasional increases. Ruq – WholeQI
decreases from 1 to 0.622 due to lower uniqueness caused
by anonymisation, which is also represented by k-anonymity.
A significant decrease in Ruf – WholeQI is observed in the
anonymised datasets compared to the original, resulting in
an extremely low risk (all below 0.1), with minor increases

being negligible. Single attribute Ruf is negligible even in
the original dataset, where further reduction is not necessary.
Rco have been slightly reduced in most of the anonymised
datasets. However, even after anonymising the dataset,
anonymised QI values still show a moderate correlation
with the SA values. To further reduce the Rco, extreme
levels of anonymisation may be required, but this will lead
to a highly compromised data utility. Rmm exhibits the
least reduction in risk. While conventional metrics indicate
higher risk reductions and other extended metrics show
substantial reductions, the Rmm does not significantly reflect
this decrease, therefore the risk cannot be categorised into
low, medium or high using linear thresholds based on Rmm.
In Figure 9, it can be seen that most of the extended

metrics in the HID dataset show a decrease in associated
risk from the Original to Anonymised-3 in general, despite
some occasional increases. Ruq – WholeQI in Figure 9
decreases from 1 to 0.654 due to lower uniqueness caused
by anonymisation, which is also represented by k-anonymity.
Ruf – WholeQI experiences a significant decrease from the
Original and ends up with extremely low risk (all below
0.1) in the anonymised datasets, with minor increases being
negligible. Individual Ruf values also show almost zero
uniformity in anonymised datasets. Rco of the SA ‘‘CCS
Diagnosis Description’’ with Hospital Country, Facility
Name, Age Group, Zip Code – 3 digits and Ethnicity have
drastically decreased in the anonymised datasets. However,
like before Rco with ‘‘Gender’’ and ‘‘Race’’ show only a
slight reduction because even after the anonymisation, the QI
values still show a moderate correlation with the SA values.
Achieving a more substantial reduction in these risks would
also require a higher level of anonymisation, which would
further compromise data utility. Once again, the Rmm was not
able to represent the risk reduction significantly.

FIGURE 9. Extended metrics heatmap for HID dataset.
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The results for the evaluation of the extended metrics in
the Adult dataset can be seen in Figure 10. As before,
anonymisation leads to significantly reduced values for most
extended metrics. With each level of anonymisation, the
Ruq – WholeQI decreases continuously from 1 to 0.648.
Ruf values of WholeQI , ‘‘age’’, ‘‘workclass’’, ‘‘education’’,
‘‘martial.status’’ and ‘‘occupation’’ are drastically reduced
in Anonymised-1 and further decreased in Anonymised-2
& 3. Other individual Ruf values were below 0.04 even
in the original dataset, and decreased further after the
anonymisation. Rco however, remains relatively high even
after anonymisation. These correlations are important for data
analysis and could only be reduced further by increasing
anonymisation, which would lead to a further reduction in
utility. Similar to the two previous datasets, Rmm is hardly
impacted by the anonymisation. With each anonymisation
level, the Rmm value only reduces by 0.01, which is almost
negligible.

FIGURE 10. Extended metrics heatmap for Adult dataset.

These evaluations imply that a higher level of anonymisation
does not always lead to a lower re-identification risk, and
thus does not necessarily result in better privacy protection.
To generate an anonymised dataset that adheres to both
conventional and extended metrics while not compromising
its data utility, specific attention must be paid to the level of
anonymisation of each element of the QI. It is not enough
to check the score of the whole dataset and anonymise more
and more until the desired scores are obtained. SCORR
is highly applicable in such scenarios since it provides
attribute-oriented risk assessment to identify where higher
anonymisation is needed and where it is not.

B. SCALABILITY
The scalability of calculating the privacy metric is a crucial
factor, as it determines its applicability to larger datasets.
In real-world scenarios, the number of attributes and records
in a dataset can be enormous, resulting in numerous
calculations.

To evaluate scalability, the execution time of each metric
was measured by executing SCORR locally on a computer.
From a hardware perspective, SCORR was designed with
the idea that users can assess their anonymised records
locally on their system for re-identification risk. For this
reason, hardware specifications were chosen to match the
performance of an average working station. More precisely,
a 64-bit Windows 11 machine with an Intel i5-1135G7 with
2.40GHz and 8.00 GB of RAM was used.

In the field of time measurement, the programming
language and libraries used also play a decisive role.
Therefore, the programming language, Python (v. 3.11)
was chosen due to its ease of use and widespread use
in the field of scientific applications. Pandas (v. 1.5.2),
a foundational open-source Python library which plays a
crucial role in data science applications, was used for the
requirements, particularly for data manipulation and analysis.
The tabular data was provided in CSV format, and Pandas
compatibility with CSV files ensures seamless integration
into data pipelines, streamlining the process of data importing
and exporting for ease of use. Finally, the calculations
were performed using NumPy (v. 1.24.2), a fundamental
open-source Python library known for its optimised array
processing capabilities, which enable faster computations and
reduced memory consumption.

As shown in Figure 11, each phase of the execution, from
booting the application to displaying the results, varies in
duration. For the evaluation of scalability, only the time
required to calculate each metric, depicted in grey in the
figure, was considered, while the time taken for other phases
was excluded. When the same metric is calculated for
different attributes as Ruf risk and Rco, the average execution
time is considered.
Two different tests were conducted for two datasets. In the
first test, the scalability of SCORR against the number of
records was evaluated. The test was conducted for different
numbers of records while selecting the same QI and SA.
The test is repeated 100 times, and average execution times
are considered for the evaluation. In the second test, the
scalability of SCORR against the number of elements of
the QI was evaluated. The test was conducted for the
same dataset, starting with selecting one attribute in QI and
continuing by selecting multiple attributes of QI, increasing
one at a time. The tests are repeated 100 times, and average
execution times are considered for the evaluation.

In Figure 12, the scalability of SCORR against the
number of records can be seen. The test was conducted
on the OULAD dataset on its first 1000, 2000, 3000,
5000, 7000 and 10000 records. During the test, attributes
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FIGURE 11. Execution phases of SCORR.

of ‘‘gender’’, ‘‘region’’, ‘‘highest_education’’, ‘‘age_band’’
and ‘‘disability’’ were selected as QI and ‘‘final_result’’ as
the SA.

FIGURE 12. Execution time vs no of records - OULAD.

It can be observed that conventional metrics and Ruq do
not show a significant increase in execution time when the
number of records grows, and hence those metrics are highly
scalable across large datasets. The reason for this higher
scalability can be identified as the simplicity of the metric
calculation and implementation with optimised vectorised
operations instead of scalar operations in the Python Pandas
library. Vectorised operations operate on entire arrays at once,
while scalar operations operate on individual elements of
an array, taking more execution time. Ruf , Rco and Rmm
exponentially increase the execution time against the number
of records. This is due to the complexity of the calculation and
the impossibility of completely implementing only vectorised

operations. Rmm limits the scalability of SCORR due to its
complexity of calculation. When analysing its scalability
versus quality, it is apparent that the Rmm lacks adequate
performance. Figure 13 shows the scalability of SCORR
against the number of elements of the QI. The test was
conducted on the HID dataset using its first 5000 records. The
test was started with selecting one QI, Hospital County and
progressively added the remaining six QI of Facility Name,
Age Group, Zip Code (3 digits), Gender, Race and Ethnicity
one at a time.

During testing, it was observed that all metrics, except
t-closeness, consistently exhibited similar execution times
with only minor variations. For the extended metrics,
execution time remained constant regardless of the number
of elements of the QI because the calculations were based
on a combined QI generated in a previous step, which
took around 10 ms for any number of attributes. Although
t-closeness exhibited a slight increase in execution time,
SCORR remained substantially scalable with the number
of QI.

FIGURE 13. Execution time vs no of elements of the QI - HID.

C. USABILITY
To further substantiate the claim of minimal user interaction,
we conducted a usability evaluation comparing SCORR with
the freely available ARX Tool, a widely used data anonymi-
sation solution. The primary objective was to quantify the
number of interactions required from initiation to obtaining
risk analysis results for a given dataset. An interaction was
defined as a selection made via a click. ARX was chosen for
comparison due to its accessibility and established use in the
privacy domain. Since ARX offers over 15 selectable options
on its main interface, the evaluation focused solely on inter-
actions necessary for risk analysis, utilising shortcuts where
possible. Table 4 summarises the number of interactions
required from programme launch to the display of risk results.
The process is divided into four categories: Setup (pre-import
actions), Import (dataset loading), Configuration (attribute
classification as DIs, QI, Sensitive, or Non-Sensitive), and
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Risk View (displaying computed risk results). This evaluation
was applied to all datasets used in this study, comparing
SCORR and ARX. The table provides the number of
interactions required per dataset for each tool, along with the
average interaction count, offering a comparative overview.
The results indicate that most interactions remain consistent
across datasets, except for configuration, which depends
on the number of attributes. In ARX, attributes must be
selected individually, with each requiring three interactions
after the first. SCORR, however, presents all attributes on a
single page, allowing efficient classification via checkboxes,
significantly reducing interaction effort. Both tools default
unselected attributes to ‘‘Non-Sensitive.’’ For RiskView, both
tools require a single step to display results. However, ARX
divides risk analysis across four tabs, potentially requiring
up to three additional interactions based on the metrics of
interest. In contrast, SCORR consolidates all risk information
on a single scrollable page, eliminating extra navigation.
SCORR requires half the interactions for Setup and Import
compared to ARX, with the most significant reduction
observed in Configuration, where interactions are reduced
by 63.63%. Overall, across the three datasets, SCORR
reduces total required interactions by 59.38%, demonstrating
a significantly more streamlined and efficient process, driven
by improvements in both calculation methods and UI/UX.

TABLE 4. Comparison of required interactions for risk analysis: ARX vs.
SCORR.

VI. CONCLUSION
This paper addressed the challenge of quantifying pri-
vacy risks in the re-identification of tabular datasets.
We introduced SCORR, a comprehensive scoring system
that assesses privacy risks using multiple metrics tailored to
different attack types. By integrating conventional metrics
(k-anonymity, l-diversity, and t-closeness) with extended
metrics (Ruq, Ruf , Rco, and Rmm), SCORR provides a
holistic risk analysis and supports informed decision-making
regarding dataset release. A thorough literature review high-
lighted the limitations of relying on single-metric approaches,
reinforcing the need for a multi-metric risk assessment.
SCORR incorporates a risk analysis model where con-
ventional metrics follow threshold-based recommendations,
while extendedmetrics are categorised into low, medium, and
high risk. Users receive a visual representation of risks via a
risk scale, simplifying interpretation. SCORR was evaluated

on three datasets (OULAD, HID, and ADULT), each with
progressively anonymised versions. The results confirmed
SCORR’s accuracy in computing conventional metrics,
aligning with ARX outputs. However, greater anonymisation
did not always correlate with lower re-identification risk.
Rco remained high in certain cases, while Rmm showed
minimal reduction across all datasets, leading to its exclusion
from the risk model. Scalability analysis demonstrated that
conventional metrics and Ruq exhibited minimal computa-
tional overhead, while more complex metrics (Ruf , Rco)
required significantly more processing time. The number
of elements of the QI did not impact most metrics, except
for t-closeness, which scaled linearly beyond a threshold.
A usability evaluation showed that SCORR reduces the
number of required interactions by nearly 60% compared to
ARX, making risk assessment more efficient and accessible.
SCORR offers an attribute-oriented privacy assessment that
enables data custodians to balance anonymisation and utility
effectively. Its modular design allows for the integration
of new metrics and refinements, ensuring adaptability to
evolving privacy challenges.

VII. FUTURE WORK
Despite its advantages, SCORR has limitations that should
be addressed to enhance re-identification risk assessment.
Currently, there are no established thresholds for extended
risk metrics. While conventional metrics follow literature-
based recommendations, extended metrics rely on arbitrary
categorisations ([0 − 0.33], [0.34 − 0.66], [0.67 − 1.00]).
A more informed approach would derive thresholds from
analysing published datasets, comparing those successfully
re-identified with those that have not. Another limitation is
SCORR’s assessment of single datasets, whereas real-world
re-identification attacks often involve cross-dataset linkages.
Future work should incorporate external data sources,
as linking anonymised datasets with public or anonymised
records significantly increases risk. Additionally, SCORR
currently determines attribute-level risk based on the most
vulnerable record, but lacks transparency in how individual
records contribute. Providing record-level insights would
allow targeted risk mitigation while maintaining data quality.
Key priorities for future development include defining risk
thresholds, integrating cross-dataset analysis, and improving
transparency through detailed statistical evaluations. These
enhancements will further refine SCORR’s effectiveness in
real-world anonymisation scenarios.
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